Abstract

A system of coupled master equations simplified from a model of noise-driven globally coupled bistable oscillators under periodic forcing is investigated. In the thermodynamic limit, the system is reduced to a set of two coupled differential equations. Rich bifurcations to subharmonics and chaotic motions are found. This behavior can be found only for certain intermediate noise intensities. Noise with intensities which are too small or too large will certainly spoil the bifurcations. In a system with large though finite size, the bifurcations to chaos induced by noise can still be detected to a certain degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.