Abstract

We describe a mechanism whereby random noise can play a constructive role in the manifestation of a pattern, aperiodic rotations, that would otherwise be damped by internal dynamics. The mechanism is described physically in a theoretical model of overdamped particle motion in two dimensions with symmetric damping and a non-conservative force field driven by noise. Cyclic motion only occurs as a result of stochastic noise in this system. However, the persistence of the cyclic motion is quantified by parameters associated with the non-conservative forcing. Unlike stochastic resonance or coherence resonance, where noise can play a constructive role in amplifying a signal that is otherwise below the threshold for detection, in the mechanism considered here, the signal that is detected does not exist without the noise. Moreover, the system described here is a linear system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.