Abstract

Experiments were carried out for the n-channel devices, processed in a 0.3 µm spacer less complementary metal–oxide–semiconductor technology. Random-telegraph-signal measurements were performed for the constant gate voltage. It is supposed that electron concentration in the channel decreases from the source to the drain contact. Lateral component of the electric field is inhomogeneous in the channel and it has a minimum value near the source and reaching the maximum value near the drain electrode. Drain current is given by two components – diffusion and drift ones. Diffusion current component is independent on the x-coordinate and it is equal to the drift current component for the low electric field. The model explaining the experimentally observed capture time constant dependence on the lateral electric field and the trap position is given. From the dependence of the capture time constant τc on the drain current could be calculated longitudinal coordinate of the trap position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.