Abstract

A survey is given of the most important noise problems in solid-state devices. Section II discusses shot noise in metal-semiconductor diodes, p-n junctions, and transistors at low injection; noise due to recombination and generation in the junction space-charge region; high-level injection effects; noise in photodiodes, avalanche diodes, and diode particle detectors, and shot noise in the leakage currents in field-effect transistors (FETs). Section III discusses thermal noise and induced gate noise in FETs; generation-recombination noise in FETs and transistors at low temperatures; noise due to recombination centers in the space-charge region(s) of FETs, and noise in space-charge-limited solid-state diodes. Section IV attempts to give a unified account of 1/f noise in solid-state devices in terms of the fluctuating occupancy of traps in the surface oxide; discusses the kinetics of these traps; applies this to flicker noise in junction diodes, transistors, and FETs, and briefly discusses flicker noise in Gunn diodes and burst noise in junction diodes and transistors. Section V discusses shot noise in the light emission of luminescent diodes and lasers, and noise in optical heterodyning. Section VI discusses circuit applications. It deals with the noise figure of negative conductance amplifiers (tunnel diodes and parametric amplifiers), and of FET, transistor, and mixer circuits. In the latter discussion capacitive up-converters, and diode, FET, and transistor mixers are dealt with.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.