Abstract

A deterministic computer model of the signal transduction pathway mediating bacterial chemotaxis was used to examine the variation in both unstimulated swimming behaviour and adaptation time to stimuli in clonal populations of cells. Copy numbers of proteins in the pathway were computed from a simplified model of transcription and translation that predicts greater-than-Poissonian statistics. Simulated and experimental individuality data could be brought into good agreement on varying the noise strength of the protein copy number distributions. In the simulations, all the proteins in the pathway are involved to a significant degree in the appearance of phenotypic diversity, although there is a modest decrease in influence with increasing copy number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.