Abstract

Abstract Quantum computing uses quantum resources provided by the underlying quantum nature of matter to enhance classical computation. However, the current Noisy Intermediate-Scale Quantum (NISQ) era in quantum computing is characterized by the use of quantum processors comprising from a few tens to, at most, a few hundreds of physical qubits without implementing quantum error correction techniques. This limits the scalability in the implementation of quantum algorithms. Digital-analog quantum computing (DAQC) has been proposed as a more resilient alternative quantum computing paradigm to outperform digital quantum computation within the NISQ era framework. It arises from adding the flexibility provided by fast single-qubit gates to the robustness of analog quantum simulations. Here, we perform a careful comparison between the digital and digital-analog paradigms under the presence of noise sources. The comparison is illustrated by comparing the performance of the quantum Fourier transform and quantum phase estimation algorithms under a wide range of single- and two-qubit noise sources. Indeed, we obtain that when the different noise channels usually present in superconducting quantum processors are considered, the fidelity of these algorithms for the digital-analog paradigm outperforms the one obtained for the digital approach. Additionally, this difference grows when the size of the processor scales up, making DAQC a sensible alternative paradigm in the NISQ era. Finally, we show how to adaptthe DAQC paradigm to quantum error mitigation techniques for canceling different noise sources, including the bang error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.