Abstract
Principal component analysis (PCA) is one of the powerful dimension reduction techniques widely used in data mining field. PCA tries to project the data into lower dimensional space while preserving the intrinsic information hidden in the data as much as possible. Disadvantage of PCA is that, extracted principal components (PCs) are linear combination of all features, hence PCs are may still contaminated with noise in the data. To address this problem we propose a modified version of PCA called noise free PCA (NFPCA), in which regularization is introduced during the PCs extraction step to mitigate the effect of noise. Potentials of the proposed method is assessed in two important application of high-dimensional molecular data: classification and survival prediction. Multiple publicly available real-world data sets are used for this illustration. Experimental results show that, the NFPCA produce highly informative than the ordinary PCA method. This is largely due to the fact that the NFPCA suppress the effect of noise in the PCs more efficiently with minimum information lost. The NFPCA is a promising alternative to existing PCA approaches not only in terms of highly informative PCs, but also its relatively cheap computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.