Abstract

In this paper, we present a brief review of the noise operation mode of fiber lasers. These lasers were studied recently by collaborative group that includes researchers, professors, and Ph.D. students from the Centro de Investigaciones en Optica, A.C. (Leon, Guanajuato, Mexico) and from the Universidad de Valencia (Valencia, Spain). Meanwhile, the pioneer works in this topic important for understanding the physics behind fiber lasers’ operation and for practical applications were done with the active participation of Dr. Evgeny Kuzin from the Instituto Nacional de Astrofisica, Optica y Electronica (Puebla, Mexico) and Dr. Georgina Beltrán-Pérez from the Benemérita Universidad Autónoma de Puebla (Puebla, Mexico), whose Ph.D. study was supervised by him. The fiber lasers under study were based on commercial erbium- and ytterbium-doped fibers as gain media and operated in continuous-wave and actively Q-switched regimes. All these fiber lasers were arranged in Fabry-Perot cavity configuration with fiber Bragg gratings as narrow-band reflectors. In the case of actively Q-switched lasers a standard fiberized acousto-optic modulator was placed close to the rear (100%) reflector. The most important conclusion of all the works grounding the present review is that, independently on laser operation regime, continuous wave or actively Q-switched, these fiber lasers operate in the extremely noise regime with the photon statistics described by Bose-Einstein distribution inherent to narrow-band thermal light sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.