Abstract
A modeling framework, based on the theory of signal processing, for characterizing the dynamics of systems driven by the unraveling of information is outlined, and is applied to describe the process of decision making. The model input of this approach is the specification of the flow of information. This enables the representation of (i) reliable information, (ii) noise, and (iii) disinformation, in a unified framework. Because the approach is designed to characterize the dynamics of the behavior of people, it is possible to quantify the impact of information control, including those resulting from the dissemination of disinformation. It is shown that if a decision maker assigns an exceptionally high weight on one of the alternative realities, then under the Bayesian logic their perception hardly changes in time even if evidences presented indicate that this alternative corresponds to a false reality. Thus, confirmation bias need not be incompatible with Bayesian updating. By observing the role played by noise in other areas of natural sciences, where noise is used to excite the system away from false attractors, a new approach to tackle the dark forces of fake news is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.