Abstract

The existence and characterisation of noise-driven bifurcations from the spatially homogeneous stationary states of a nonlinear, non-local Fokker–Planck type partial differential equation describing stochastic neural fields is established. The resulting theory is extended to a system of partial differential equations modelling noisy grid cells. It is shown that as the noise level decreases, multiple bifurcations from the homogeneous steady state occur. Furthermore, the shape of the branches at a bifurcation point is characterised locally. The theory is supported by a set of numerical illustrations of the condition leading to bifurcations, the patterns along the corresponding local bifurcation branches, and the stability of the homogeneous state and the most prevalent pattern: the hexagonal one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.