Abstract
Several noise compensation schemes for speech recognition in impulsive and nonimpulsive noise are considered. The noise compensation schemes are spectral subtraction, HMM-based Wiener (1949) filters, noise-adaptive HMMs, and a front-end impulsive noise removal. The use of the cepstral-time matrix as an improved speech feature set is explored, and the noise compensation methods are extended for use with cepstral-time features. Experimental evaluations, on a spoken digit database, in the presence of ear noise, helicopter noise, and impulsive noise, demonstrate that the noise compensation methods achieve substantial improvement in recognition across a wide range of signal-to-noise ratios. The results also show that the cepstral-time matrix is more robust than a vector of identical size, which is composed of a combination of cepstral and differential cepstral features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.