Abstract

The noise characteristics of x-ray differential phase contrast computed tomography (DPC-CT) were investigated. Both theoretical derivation and experimental results demonstrated that the dependence of noise variance on spatial resolution in DPC-CT follows an inverse linear law. This behavior distinguishes DPC-CT from conventional absorption based x-ray CT, where the noise variance varies inversely with the cube of the spatial resolution. This anomalous noise behavior in DPC-CT is due to the Hilbert filtering kernel used in the CT reconstruction algorithm, which equally weights all spatial frequency content. Additionally, we demonstrate that the noise power of DPC-CT is scaled by the inverse of spatial frequency and is highly concentrated at the low spatial frequencies, whereas conventional absorption CT increases in power at the high spatial frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call