Abstract

We study, both numerically and experimentally, the relative intensity noise (RIN) and timing jitter characteristics of optical parametric generation (OPG) process in MgO-doped periodically poled LiNbO3 (MgO:PPLN) pumped by fiber femtosecond laser. We directly characterize the RIN, and measure timing jitter spectral density of the OPG process based on the balanced optical cross-correlator (BOC) technique for the first time as well, which are both in a fairly good agreement with numerical simulation. Both the numerical and experimental study reveals that OPG can suffer from a smaller intensity fluctuation but a lager temporal jitter when it is driven into saturation. Furthermore, we demonstrate that with a 30 mW CW diode laser injection seeding the OPG output results in superior noise performance compared to the vacuum fluctuations seeded OPG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call