Abstract

Abstract The fan is the main component of the cooling system of an automobile engine. A typical automobile cooling fan consists of a shrouded axial fan, stator vanes, a deflector, and a cover. With recent developments in the automobile industry, the increase in the speed of rotation and blade load of cooling fans has increased the noise generated by them. To reduce it, it is important to analyze the characteristics of this noise. This paper uses an acoustic test to examine the characteristics of flow and noise of automobile cooling fans. The frequency spectrum and far-field radiation of the noise of the fan are first analyzed through far-field measurements, and the influence of the single rotor, tip clearance of the blade, and cover on fan noise is studied. The distribution of the mode spectrum and characteristics of sound propagation of discrete tonal noise are then examined using the circumferential mode test. The influence of the flow structure on fan noise is also studied. The flow characteristics and distribution of the source of noise of the automobile cooling fan are then used to analyze the influence of the structure of the fan on the noise generated by it. The results can help develop designs to reduce the noise of automobile cooling fans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.