Abstract
Human visual speed perception is qualitatively consistent with a Bayesian observer that optimally combines noisy measurements with a prior preference for lower speeds. Quantitative validation of this model, however, is difficult because the precise noise characteristics and prior expectations are unknown. Here, we present an augmented observer model that accounts for the variability of subjective responses in a speed discrimination task. This allowed us to infer the shape of the prior probability as well as the internal noise characteristics directly from psychophysical data. For all subjects, we found that the fitted model provides an accurate description of the data across a wide range of stimulus parameters. The inferred prior distribution shows significantly heavier tails than a Gaussian, and the amplitude of the internal noise is approximately proportional to stimulus speed and depends inversely on stimulus contrast. The framework is general and should prove applicable to other experiments and perceptual modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.