Abstract

Bidirectional backpropagation trains a neural network with backpropagation in both the backward and forward directions using the same synaptic weights. Special injected noise can then improve the algorithm’s training time and accuracy because backpropagation has a likelihood structure. Training in each direction is a form of generalized expectation–maximization because backpropagation itself is a form of generalized expectation–maximization. This requires backpropagation invariance in each direction: The gradient log-likelihood in each direction must give back the original update equations of the backpropagation algorithm. The special noise makes the current training signal more probable as bidirectional backpropagation climbs the nearest hill of joint probability or log-likelihood. The noise for injection differs for classification and regression even in the same network because of the constraint of backpropagation invariance. The backward pass in a bidirectionally trained classifier estimates the centroid of the input pattern class. So the feedback signal that arrives back at the input layer of a classifier tends to estimate the local pattern-class centroid. Simulations show that noise speeded convergence and improved the accuracy of bidirectional backpropagation on both the MNIST test set of hand-written digits and the CIFAR-10 test set of images. The noise boost further applies to regular and Wasserstein bidirectionally trained adversarial networks. Bidirectionality also greatly reduced the problem of mode collapse in regular adversarial networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call