Abstract

Opportunistic Underwater Sensor Networks (OUSNs) are deployed for various underwater applications, such as underwater creature tracking and tactical surveillance. In an OUSN invaded by some eavesdroppers, the data messages disseminated by sensor nodes are probably stolen (captured and cracked) by the eavesdroppers. The data messages are disseminated through acoustic waves which could be altered by the environmental noises, i.e., the acoustic waves containing data messages could be superimposed by the environmental noises. To protect the data messages from being stolen by eavesdroppers and guarantee the required delivery ratio of data messages, we propose a Noise-based-protection Message Dissemination Method (NMDM). In NMDM, the acoustic waves containing data messages are superposed by the environmental noises and converted into some pseudo data messages. The environmental noises around source nodes are identified, encoded, and encrypted into some noise messages. Then, the pseudo data messages and noise messages are individually disseminated to the sink node. Such mechanism makes the eavesdroppers difficult to steal the data messages. Besides, the required delivery ratio of data messages is achieved by measuring the similarities between the nodes and the sink node, i.e., the pseudo data messages and noise messages are preferentially disseminated to the nodes with larger similarities to the sink node. Finally, simulation results demonstrate the superior performance of NMDM. NMDM can reduce the theft ratio of data messages and guarantee the required delivery ratio of data messages effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call