Abstract

Preparing thermal states on a quantum computer can have a variety of applications, from simulating many-body quantum systems to training machine learning models. Variational circuits have been proposed for this task on near-term quantum computers, but several challenges remain, such as finding a scalable cost-function, avoiding the need of purification, and mitigating noise effects. We propose a new algorithm for thermal state preparation that tackles those three challenges by exploiting the noise of quantum circuits. We consider a variational architecture containing a depolarizing channel after each unitary layer, with the ability to directly control the level of noise. We derive a closed-form approximation for the free-energy of such circuit and use it as a cost function for our variational algorithm. By evaluating our method on a variety of Hamiltonians and system sizes, we find several systems for which the thermal state can be approximated with a high fidelity. However, we also show that the ability for our algorithm to learn the thermal state strongly depends on the temperature: while a high fidelity can be obtained for high and low temperatures, we identify a specific range for which the problem becomes more challenging. We hope that this first study on noise-assisted thermal state preparation will inspire future research on exploiting noise in variational algorithms.

Highlights

  • Preparing thermal states on a quantum computer can have a variety of applications, from simulating many-body quantum systems to training machine learning models

  • A growing body of work has suggested using variational algorithms to solve the task of thermal state preparation on Noisy Intermediate Scale Quantum (NISQ) devices

  • We introduce here the Noise-Assisted Variational Quantum Thermalizer (NAVQT), a variational algorithm where depolarizing noise is used as the source of entropy for preparing the thermal state

Read more

Summary

Introduction

Preparing thermal states on a quantum computer can have a variety of applications, from simulating many-body quantum systems to training machine learning models. Variational circuits have been proposed for this task on near-term quantum computers, but several challenges remain, such as finding a scalable cost-function, avoiding the need of purification, and mitigating noise effects. We show that the ability for our algorithm to learn the thermal state strongly depends on the temperature: while a high fidelity can be obtained for high and low temperatures, we identify a specific range for which the problem becomes more challenging. We hope that this first study on noise-assisted thermal state preparation will inspire future research on exploiting noise in variational algorithms. Since a unitary circuit acting on the zero-state cannot directly output a mixed state, most variational thermalization methods consist either in preparing a purification of the thermal state and tracing out the ancillary qubits at the end of the ­circuit[15–18], or in choosing an appropriate mixed state as ­input[19–21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call