Abstract

In this work, we compare the resistive switching characteristics between Ti/ZrOX/TiN and Ti/ZrOX/HfAlOX/TiN. The bilayer structure of the ZrOX-based device enables power consumption reduction owing to a lower forming voltage and compliance current. Moreover, the on/off ratio of the Ti/ZrOX/HfAlOX/TiN device (>102) is higher than that of the Ti/ZrOX/TiN device (>10). We use the 1/f noise measurement technique to clarify the transport mechanism of the Ti/ZrOX/HfAlOX/TiN device; consequently, ohmic conduction and Schottky emission are confirmed in the low- and high-resistance states, respectively. In addition, the multilevel cell, potentiation, and depression characteristics of the Ti/ZrOX/HfOX/TiN device are considered to assess its suitability as a neuromorphic device. Accordingly, a modified National Institute of Standards and Technology database simulation is conducted using Python to test the pattern recognition accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call