Abstract

Noise-assisted energy transfer can be explained geometrically in terms of the set of one-electron reduced density matrices (1-RDMs) [R. Chakraborty and D. A. Mazziotti, Phys. Rev. A 91, 010101(R) (2015)]. In this paper, we examine the geometric picture of quantum noise for the seven-chromophore Fenna-Matthews-Olson (FMO) complex. Noise expands the feasible set of orbital occupation trajectories to the target state through the violation of the pure-state N-representability conditions on the 1-RDM, known as the generalized Pauli constraints. While the generalized Pauli constraints are not explicitly known for seven-electron systems, we are able to treat a seven-exciton model of the FMO complex through the use of generalized Pauli constraints for p qubits which are known for arbitrary p. In the model, we find that while dephasing noise alone produces a trajectory of ensemble states that neither expands the set of 1-RDMs nor reaches the reaction center, the inclusion of both dephasing and dissipation expands the set of 1-RDMs and exhibits an efficient energy transfer to the reaction center. The degree to which the noise expands the set of 1-RDMs, violating the generalized Pauli constraints, is quantified by the distance of the 1-RDM outside its pure set to the distance of the 1-RDM inside its ensemble set. The geometric picture of energy transfer has applications to general quantum systems in chemistry and physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call