Abstract

In hydraulic systems, pumps are the major source of noise and vibration. It generates flow ripples which interact with other hydraulic components, such as transmission lines and valves to create harmonic pressure waves, i.e., fluid-borne noise (FBN). Fig. 1 shows a typical oscillating pressure measured at the outlet of a ten-vane pump running at 1500 rpm. Fig. 2 gives the frequency spectrum for the pressure signal which contains harmonic components of the fundamental frequency, 25 Hz, which correlates with the pump operating speed. The largest peak is at 250 Hz, which corresponds to the shaft speed times the number of the pumping elements (10 vanes in this case). The FBN propagates along as well as interacts with the tubing and other components to result in airborne noise (ABN) and structure-borne noise (SBN, i.e., structural vibration). These noises can become excessive, and lead to damage the tubing system and other components. Therefore, to study the pressure wave propagation in the hydraulic tubing system, it is important to take the fluid-structure interaction into account to further the understanding of noise transmission mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call