Abstract

A large number of large photocathode area photomultipliers are widely used in astroparticle physics detectors to measure Cherenkov light in media like water or ice. In neutrino telescopes the key element of the detector is the optical module, which consists of one or more photodetectors inside a transparent pressure-resistant glass sphere. The glass sphere serves as mechanical protection while ensuring good light transmission. The performance of the telescope is largely dependent on the presence of noise pulses present on the anode of the photomultipliers. A study was conducted of noise pulses of Hamamatsu 10-inch and 3-inch diameter photomultipliers measuring time and charge distributions of dark pulses, pre-pulses, delayed pulses, and after-pulses. In particular, an analysis on multiple after-pulses was performed on both photomultiplier models. A digital oscilloscope was used to acquire all the pulses after the main pulse during a time window of 16μs for an off-line analysis to determine the charge and time spectra and a correlation between the arrival times and the charge of each after-pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call