Abstract

This paper discusses noise and bias in the method of holographic interferometry applied to the study of acoustics phenomena. The influence of noise on the measurement of acoustic pressure is described by an analytical approach. Relationships to quantify the minimum measurable fluid density and acoustic pressure are given by taking into account the experimental parameters of the setup. These parameters are related to the spatial bandwidths, number of electrons in pixels, readout noise, and quantization noise. Experimental results show that theoretical relations are relatively close to experimental data and that the lower pressure measurement limit is on the order of 15 Pa for the acoustics pressure. The case of waveguides excited by an internal or external acoustic source is investigated. Specifically, for the case of studies in thermoacoustics, this paper demonstrates that the parasitic coupling of vibrations can be compensated. The proposed method is based on the determination of the amplitude and phase of the parasitic oscillation, requiring a few assumptions related to the physics of the underlying phenomenon. Successful compensation is obtained and yields experimental data in agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.