Abstract

BackgroundNogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. In vitro, cells expressing NgR1/2 are inhibited from adhering to and spreading on a myelin substrate. Neuronal injury also results in the presence of dendritic cells (DCs) in the central nervous system, where they can come into contact with myelin debris. The exact mechanisms of interaction of immune cells with CNS myelin are, however, poorly understood.MethodsHuman DCs were differentiated from peripheral blood monocytes and mouse DCs were differentiated from wild type and NgR1/NgR2 double knockout bone marrow precursors. NgR1 and NgR2 expression were determined with quantitative real time PCR and immunoblot, and adhesion of cells to myelin was quantified.ResultsWe demonstrate that human immature myeloid DCs express NgR1 and NgR2, which are then down-regulated upon maturation. Human mature DCs also adhere to a much higher extent to a myelin substrate than immature DCs. We observe the same effect when the cells are plated on Nogo-66-His (binding peptide for NgR1), but not on control proteins. Mature DCs taken from Ngr1/2 knockout mice adhere to a much higher extent to myelin compared to wild type mouse DCs. In addition, Ngr1/2 knockout had no effect on in vitro DC differentiation or phenotype.ConclusionsThese results indicate that a lack of NgR1/2 expression promotes the adhesion of DCs to myelin. This interaction could be important in neuroinflammatory disorders such as multiple sclerosis in which peripheral immune cells come into contact with myelin debris.

Highlights

  • Nogo-66 receptor Nogo-66 receptor-1 (NgR1) and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors

  • Expression of NgRs in human and mouse dendritic cells (DCs) As our aim was to expand on current knowledge of the role of NgRs in non-central nervous system (CNS) cells, we began the study as a screen for NgR1 expression in human peripheral immune cells

  • We describe the increased expression of NgR1 and NgR2 in human immature DCs, which are down-regulated upon maturation

Read more

Summary

Introduction

Nogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. A number of physical and molecular inhibitory factors expressed by neurons, astrocytes, and oligodendrocytes serve to maintain the architecture of the mature CNS, but at the same time contribute to the lack of repair mechanisms following damage. Binding of the NgR1 inhibitory complex by MAIFs leads to activation of intracellular RhoA, thereby resulting in axonal outgrowth inhibition, or modulation of cell adhesion and motility [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call