Abstract

Nogo-A is a key inhibitory molecule of axon regeneration in oligodendrocytes. However, little is known about its role in adult neurons. In this study, we showed an important function of Nogo-A on regulation of inflammatory pain in dorsal root ganglion (DRG) neurons. In adult rats with complete Freund's adjuvant (CFA) hind paw inflammation, DRG neurons showed a significant increase in Nogo-A expression. Disruption of Nogo-A signaling with Nogo-66 receptor antagonist peptide, Nogo-A blocking antibody, Nogo-A short hairpin RNA, or Nogo-A gene knockout attenuated CFA-induced inflammatory heat hyperalgesia. Moreover, disruption of Nogo-A signaling suppressed the function and expression in DRG neurons of the transient receptor potential vanilloid subfamily member (TRPV)-1 channel, which is known to be the endogenous transducer of noxious heat during inflammation. These effects were accompanied with a reduction in LIM domain kinase (LIMK)/cofilin phosphorylation and actin polymerization. Similar disruption of actin filament architecture by direct action of Latrunculin A reduced the TRPV-1 activity and up-regulation of TRPV-1 protein caused by CFA. We conclude that Nogo-A plays an essential role in the development of inflammatory heat hyperalgesia, partly through maintaining TRPV-1 function via activation of the LIMK/cofilin pathway, which regulates actin filament dynamics. These findings support a therapeutic potential of modulating Nogo-A signaling in pain management.-Hu, F., Liu, H.-C., Su, D.-Q., Chen, H.-J., Chan, S.-O., Wang, Y., Wang, J. Nogo-A promotes inflammatory heat hyperalgesia by maintaining TRPV-1 function in the rat dorsal root ganglion neuron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call