Abstract

Most of the current therapies, as well as many of the clinical trials, for multiple sclerosis (MS) target the inflammatory autoimmune processes, but less than 20% of all clinical trials investigate potential therapies for the chronic progressive disease stage of MS. The latter is responsible for the steadily increasing disability in many patients, and there is an urgent need for novel therapies that protect nervous system tissue and enhance axonal growth and/or remyelination. As outlined in this review, solid pre-clinical data suggest neutralization of the neurite outgrowth inhibitor Nogo-A as a potential new way to achieve both axonal and myelin repair. Several phase I clinical studies with anti-Nogo-A antibodies have been conducted in different disease paradigms including MS and spinal cord injury. Data from spinal cord injury and amyotrophic lateral sclerosis(ALS) trials accredit a good safety profile of high doses of anti-Nogo-A antibodies administered intravenously or intrathecally. An antibody against a Nogo receptor subunit, leucine rich repeat and immunoglobulin-like domain-containing protein 1(LINGO-1), was recently shown to improve outcome in patients with acute optic neuritis in a phase II study. Nogo-A-suppressing antibodies could be novel drug candidates for the relapsing as well as the progressive MS disease stage. In this review, we summarize the available pre-clinical and clinical evidence on Nogo-A and elucidate the potential of Nogo-A-antibodies as a therapy for progressive MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.