Abstract
This paper deals with second-order optimality conditions for a quasilinear elliptic control problem with a nonlinear coefficient in the principal part that is finitely PC2 (continuous and C2 apart from finitely many points). We prove that the control-to-state operator is continuously differentiable even though the nonlinear coefficient is non-smooth. This enables us to establish “no-gap” second-order necessary and sufficient optimality conditions in terms of an abstract curvature functional, i.e., for which the sufficient condition only differs from the necessary one in the fact that the inequality is strict. A condition that is equivalent to the second-order sufficient optimality condition and could be useful for error estimates in, e.g., finite element discretizations is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.