Abstract
Noetherian operators are differential operators that encode primary components of a polynomial ideal. We develop a framework, as well as algorithms, for computing Noetherian operators with local dual spaces, both symbolically and numerically. For a primary ideal, such operators provide an alternative representation to one given by a set of generators. This description fits well with numerical algebraic geometry, taking a step toward the goal of numerical primary decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.