Abstract
It is well-known (see [13]) that a hereditary torsion theory τ for the category R-mod is noetherian if and only if the class of all τ-torsionfree τ-injective modules is closed under arbitrary direct sums. So, it is natural to investigate the hereditary torsion theories having the property that the class of all τ-torsionfree injective modules is closed under arbitrary direct sums, which are called ℱ-noetherian. These torsion theories have been studied by Teply in [16]. In the second part of this note we shall study the weakly exact hereditary torsion theories, which generalize the exact one's.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.