Abstract

For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of the theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and q˙s. An example is given to illustrate the application of the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.