Abstract

In this work we present perturbative results for the renormalization of the supercurrent operator, $S_\mu$, in ${\cal N} =1$ Supersymmetric Yang-Mills theory. At the quantum level, this operator mixes with both gauge invariant and noninvariant operators, which have the same global transformation properties. In total, there are $13$ linearly independent mixing operators of the same and lower dimensionality. We determine, via lattice perturbation theory, the first two rows of the mixing matrix, which refer to the renormalization of $S_\mu$, and of the gauge invariant mixing operator, $T_\mu$. To extract these mixing coefficients in the $\overline{MS}$ renormalization scheme and at one-loop order, we compute the relevant two-point and three-point Green’s functions of $S_\mu$ and $T_\mu$ in two regularizations: dimensional and lattice. On the lattice, we employ the plaquette gluonic action and for the gluinos we use the fermionic Wilson action with clover improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.