Abstract

Abstract Noether’s 2nd theorem applied to a total system states that a global symmetry which is a part of local symmetries does not provide a physically meaningful conserved charge but it instead leads to off-shell constraints as a form of conserved currents. In this paper, we propose a general method to derive a matter-conserved current associated with a special global symmetry in the presence of local symmetries. While currents derived from local symmetries of a matter sector with a covariant background gauge field are not conserved in general, we show that the current associated with a special type of a global symmetry, called a hidden matter symmetry, is on-shell conserved. We apply this derivation to a U(1) gauge theory, general relativity and non-abelian gauge theory. In general relativity, the associated conserved charge agrees with the one recently proposed from a different point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.