Abstract

Thus far, the negative effects of Nodularia spumigena blooms on aquatic organisms have been mainly attributed to the production of the hepatotoxic nodularin (NOD). In the current work, the accumulation of other N. spumigena metabolites in blue mussels and crustaceans, and their effect on Thamnocephalus platyurus and Artemia franciscana, were examined. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses provided evidence that both blue mussels collected after a cyanobacterial bloom in the Baltic Sea and the crustaceans exposed under laboratory conditions to N. spumigena extract accumulated the cyclic anabaenopeptins (APs). In the crustaceans, the linear peptides, spumigins (SPUs) and aeruginosins (AERs), were additionally detected. Exposure of T. platyurus and A. franciscana to N. spumigena extract confirmed the negative effect of nodularin on the organisms. However, high numbers of dead crustaceans were also recorded in the nodularin-free fraction, which contained protease inhibitors classified to spumigins and aeruginosins. These findings indicate that cyanobacterial toxicity to aquatic organisms is a complex phenomenon and the induced effects can be attributed to diverse metabolites, not only to the known hepatotoxins.

Highlights

  • In fresh, marine, and brackish waters throughout the world, anthropogenic eutrophication, together with favorable weather conditions, have a stimulating effect on cyanobacterial growth and bloom formation [1,2]

  • With the exception of four cyclic hexapeptides classified to anabaenopeptins (APs) with mass to charge ratio, m/z, 918, 916, 837 and 824 and one spumigin (SPU) with m/z 627, the compounds included in Table

  • The LC-MS/MS analysis of mussels collected from the Gulf of Gdańsk revealed the presence of nodularin (NOD) and nine anabaenopeptins (Table 1)

Read more

Summary

Introduction

Marine, and brackish waters throughout the world, anthropogenic eutrophication, together with favorable weather conditions, have a stimulating effect on cyanobacterial growth and bloom formation [1,2]. The ecological consequences of the blooms include changes in the physical and chemical conditions of aquatic ecosystems and the direct and indirect impact of cyanobacteria, especially toxic species, on other aquatic organisms. Invertebrates were shown to be less affected by cyanobacteria than fish [3,4]. Within this group of organisms, intraspecies differences in the reactions were observed [5,6]. According to Engström-Öst et al [14], the content of the toxic N. spumigena in the guts of Acartia was negatively related to egg production and the condition of the female copepod

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.