Abstract

Study presented in this paper is concerned with fatigue crack initiation detection, crack propagation observation and measurement as well as with numerical simulation of damage accumulation and propagation in the nodular cast iron grade EN-GJS-400-18-LT. Material properties of nodular cast iron are well elaborated in previous authors' papers. Crack initiation and its propagation observation as well as crack length measurement is performed on standardized specimens using ARAMIS 4M optical system. Based on the experimental results, a new three-dimensional constitutive model is proposed to simulate the low-cycle fatigue behaviour of considered material. An efficient algorithm for modelling cyclic plasticity is used for performing numerical simulation of crack initiation and growth on standardized specimens made from nodular cast iron. The computational procedure accuracy is verified by comparing the computed results with the real experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.