Abstract

We consider the problem of optimal probing to learn connectivity weights in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to applications in neural medicine and other settings in which the underlying physical network structure is not well-known. We show that the problem of selecting which node to probe amounts to a problem of optimal sensor scheduling. In this case, the solution to the greedy probing strategy has a convenient solution. Furthermore, we show that under certain conditions, the greedy probing strategy is optimal over a finite horizon and, moreover, that it amounts to periodic ‘round-robin’ scheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call