Abstract

Data Warehouses (DWs) with large quantities of data present major performance and scalability challenges, and parallelism can be used for major performance improvement in such context. However, instead of costly specialized parallel hardware and interconnections, we focus on low-cost standard computing nodes, possibly in a non-dedicated local network. In this environment, special care must be taken with partitioning and processing. We use experimental evidence to analyze the shortcomings of a basic horizontal partitioning strategy designed for that environment, then propose and test improvements to allow efficient placement for the low-cost Node Partitioned Data Warehouse. We show experimentally that extra overheads related to processing large replicated relations and repartitioning requirements between nodes can significantly degrade speedup performance for many query patterns. We analyze a simple, easy-to-apply partitioning and placement decision that achieves good performance improvement results. Our experiments and discussion provide important insight into partitioning and processing issues for data warehouses in shared-nothing environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.