Abstract
Monocrystalline silicon is an important raw material in the semiconductor and photovoltaic industries. In the Czochralski (CZ) method of growing monocrystalline silicon, various factors may cause node loss and lead to the failure of crystal growth. Currently, there is no efficient method to detect the node loss of monocrystalline silicon at industrial sites. Therefore, this paper proposed a monocrystalline silicon node-loss detection method based on multimodal data fusion. The aim was to explore a new data-driven approach for the study of monocrystalline silicon growth. This article first collected the diameter, temperature, and pulling speed signals as well as two-dimensional images of the meniscus. Later, the continuous wavelet transform was used to preprocess the one-dimensional signals. Finally, convolutional neural networks and attention mechanisms were used to analyze and recognize the features of multimodal data. In the article, a convolutional neural network based on an improved channel attention mechanism (ICAM-CNN) for one-dimensional signal fusion as well as a multimodal fusion network (MMFN) for multimodal data fusion was proposed, which could automatically detect node loss in the CZ silicon single-crystal growth process. The experimental results showed that the proposed methods effectively detected node-loss defects in the growth process of monocrystalline silicon with high accuracy, robustness, and real-time performance. The methods could provide effective technical support to improve efficiency and quality control in the CZ silicon single-crystal growth process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.