Abstract
This research leverages Memgraph, an open-source graph database, to analyze graph-based network data and apply Graph Neural Networks (GNNs) for a detailed classification of cyberattack tactics categorized by the MITRE ATT&CK framework. As part of graph characterization, the page rank, degree centrality, betweenness centrality, and Katz centrality are presented. Node classification is utilized to categorize network entities based on their role in the traffic. Graph-theoretic features such as in-degree, out-degree, PageRank, and Katz centrality were used in node classification to ensure that the model captures the structure of the graph. The study utilizes the UWF-ZeekDataFall22 dataset, a newly created dataset which consists of labeled network logs from the University of West Florida’s Cyber Range. The uniqueness of this study is that it uses the power of combining graph-based characterization or analysis with machine learning to enhance the understanding and visualization of cyber threats, thereby improving the network security measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.