Abstract

Multi-layer complex networks (MLCN) appears in various domains, such as, transportation, supply chains, etc. Failures in MLCN can lead to major disruptions in systems. Several research have focussed on different kinds of failures, such as, cascades, their reasons and ways to avoid them. This paper considers failures in a specific type of MLCN where the lower layer provides services to the higher layer without cross layer interaction, typical of a computer network. A three layer MLCN is constructed with the same set of nodes where each layer has different characteristics, the bottom most layer is Erdos–Renyi (ER) random graph with shortest path hop count among the nodes as gaussian, the middle layer is ER graph with higher number of edges from the previous, and the top most layer is preferential attachment graph with even higher number of edges. Both edge and node failures are considered. Failures happen with decreasing order of centralities of edges and nodes in static batch mode and when the centralities change dynamically with progressive failures. Emergent pattern of three key parameters, namely, average shortest path length (ASPL), total shortest path count (TSPC) and total number of edges (TNE) for all the three layers after node or edge failures are studied. Extensive simulations show that all but one parameters show definite degrading patterns. Surprising, ASPL for the middle layer starts showing a chaotic behaviour beyond a certain point for all types of failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.