Abstract

We establish sharp upper bounds on the (n−1)-dimensional Hausdorff measure of the zero (nodal) sets and on the maximal order of vanishing corresponding to eigenfunctions of a regular elliptic problem on a bounded domain Ω ⊆ ℝn with real-analytic boundary. The elliptic operator may be of an arbitrary even order, and its coefficients are assumed to be real-analytic. This extends a result of Donnelly and Fefferman ([DF1], [DF3]) concerning upper bounds for nodal volumes of eigenfunctions corresponding to the Laplacian on compact Riemannian manifolds with boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.