Abstract

Let $u$ be a harmonic function in the unit ball $B(0,1) \subset \mathbb{R}^n$, $n \geq 3$, such that $u(0)=0$. Nadirashvili conjectured that there exists a positive constant $c$, depending on the dimension $n$ only, such that $H^{n-1}(\{u=0 \}\cap B) \geq c$. We prove Nadirashvili's conjecture as well as its counterpart on $C^\infty$-smooth Riemannian manifolds. The latter yields the lower bound in Yau's conjecture. Namely, we show that for any compact $C^\infty$-smooth Riemannian manifold $M$ (without boundary) of dimension $n$ there exists $c>0$ such that for any Laplace eigenfunction $\varphi_\lambda$ on $M$, which corresponds to the eigenvalue $\lambda$, the following inequality holds: $c \sqrt \lambda \leq H^{n-1}(\{\varphi_\lambda =0\})$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.