Abstract

In the present work, we investigated the role of Nodal, an embryonic morphogen from the TGFβ superfamily in corpus luteum (CL) secretory activity using cells isolated from equine CL as a model. Expression pattern of Nodal and its receptors activin receptor A type IIB (ACVR2B), activin receptor-like kinase (Alk)-7, and Alk4, as well as the Nodal physiological role, demonstrate the involvement of this pathway in functional luteolysis. Nodal and its receptors were immune localized in small and large luteal cells and endothelial cells, except ACVR2B, which was not detected in the endothelium. Nodal mRNA in situ hybridization confirmed its transcription in steroidogenic and endothelial cells. Expression analysis of the aforementioned factors evidenced that Nodal and Alk7 proteins peaked at the mid-CL (P < .01), the time of luteolysis initiation, whereas Alk4 and ACVR2B proteins increased from mid- to late CL (P < .05). The Nodal treatment of luteal cells decreased progesterone and prostaglandin (PG) E2 concentrations in culture media (P < .05) as well as mRNA and protein of secretory enzymes steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, cytosolic PGE2 synthase, and microsomal PGE2 synthase-1 (P < .05). Conversely, PGF2α secretion and gene expression of PG-endoperoxidase synthase 2 and PGF2α synthase were increased after Nodal treatment (P < .05). Mid-CL cells cultured with PGF2α had increased Nodal protein expression (P < .05) and phosphorylated mothers against decapentaplegic-3 phosphorylation (P < .05). Finally, the supportive interaction between Nodal and PGF2α on luteolysis was shown to its greatest extent because both factors together more significantly inhibited progesterone (P < .05) and promoted PGF2α (P < .05) synthesis than Nodal or PGF2α alone. Our results neatly pinpoint the sites of action of the Nodal signaling pathway toward functional luteolysis in the mare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.