Abstract

A finite dimensional power-associative algebra 𝒰 with a unity element 1 over a field J is called a nodal algebra by Schafer (7) if every element of 𝒰 has the form α1 + z where α is in J, z is nilpotent, and if 𝒰 does not have the form 𝒰 = ℐ1 + n with n a nil subalgebra of 𝒰. An algebra SI is called a non-commutative Jordan algebra if 𝒰 is flexible and 𝒰+ is a Jordan algebra. Some examples of nodal non-commutative Jordan algebras were given in (5) and it was proved in (6) that if 𝒰 is a simple nodal noncommutative Jordan algebra of characteristic not 2, then 𝒰+ is associative. In this paper we describe all simple nodal non-commutative Jordan algebras of characteristic not 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.