Abstract

We obtain the limiting distribution of the nodal area of random Gaussian Laplace eigenfunctions on T 3 = R 3 / Z 3 \mathbb {T}^3= \mathbb {R}^3/ \mathbb {Z}^3 (three-dimensional “arithmetic random waves"). We prove that, as the multiplicity of the eigenspace goes to infinity, the nodal area converges to a universal, non-Gaussian distribution. Universality follows from the equidistribution of lattice points on the sphere. Our arguments rely on the Wiener chaos expansion of the nodal area: we show that, analogous to the two-dimensional case addressed by Marinucci et al., [Geom. Funct. Anal. 26 (2016), pp. 926–960] the fluctuations are dominated by the fourth-order chaotic component. The proof builds upon recent results from Benatar and Maffiucci [Int. Math. Res. Not. IMRN (to appear)] that establish an upper bound for the number of nondegenerate correlations of lattice points on the sphere. We finally discuss higher-dimensional extensions of our result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.