Abstract
The aim of the present study was to investigate the potential inhibitory effects of nodakenin, a coumarin glucoside derivative from the root extract of Angelica gigas Nakai (AGN), on melanogenesis and its underlying mechanisms in B16F10 melanoma cells. The inhibitory effects of nodakenin on melanogenesis were evaluated by determining melanin contents and tyrosinase activity in α -melanocyte stimulating hormone (α-MSH)-treated B16F10 melanoma cells. The mechanisms associated with the anti-pigmentation effect of nodakenin were investigated by quantitative real-time PCR and immunoblotting analysis. Using the UVB-irradiated conditioned media culture system and UVB-irradiated co-cultivation system of HaCaT keratinocytes and B16F10 melanoma cells mimicking in vivo melanin biosynthesis, the effect of nodakenin on melanin production was evaluated. Melanin content analysis showed that nodakenin decreased cellular melanin biosynthesis in α-MSH-treated B16F10 cells. Immunoblotting revealed that CREB phosphorylation, MITF, a mastering transcription factor of melanogenesis and its downstream genes tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 were downregulated by nodakenin in a dose-dependent manner. Interestingly, nodakenin did not affect the phosphorylation of PKA and p38 MAPK but the phosphorylation of ERK1/2 and MSK1. In addition, the inhibition of melanin accumulation by nodakenin in the UVB-irradiated conditioned media culture system and UVB-irradiated co-cultivation system of HaCaT and B16F10 cells suggests that nodakenin has potential as an anti-pigmentation activity. These data suggest that nodakenin inhibits the melanogenesis in B16F10 cells by interfering the ERK/ MSK1/CREB axis and thus preventing MITF expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.