Abstract

Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca(2+) levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by alpha-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.