Abstract

AbstractMars 2020 Mars Environmental Dynamics Analyzer (MEDA) instrument data acquired during half of a Martian year (Ls 13°–180°), and modeling efforts with the Mars Regional Atmospheric Modeling System (MRAMS) and the Mars Climate Database (MCD) enable the study of the seasonal evolution and variability of nocturnal atmospheric turbulence at Jezero crater. Nighttime conditions in Mars's Planetary Boundary Layer are highly stable because of strong radiative cooling that efficiently inhibits convection. However, MEDA nighttime observations of simultaneous rapid fluctuations in horizontal wind speed and air temperatures suggest the development of nighttime turbulence in Jezero crater. Mesoscale modeling with MRAMS also shows a similar pattern and enables us to investigate the origins of this turbulence and the mechanisms at play. As opposed to Gale crater, less evidence of turbulence from breaking mountain wave activity was found in Jezero during the period studied with MRAMS. On the contrary, the model suggests that nighttime turbulence at Jezero crater is explained by increasingly strong wind shear produced by the development of an atmospheric bore‐like disturbance at the nocturnal inversion interface. These atmospheric bores are produced by downslope winds from the west rim undercutting a strong low‐level jet aloft from ∼19:00 to 01:00 LTST and from ∼01:00 LTST to dawn when undercutting weak winds aloft. The enhanced wind shear leads to a reduction in the Richardson number and an onset of mechanical turbulence. Once the critical Richardson Number is reached (Ri ∼ <0.25), shear instabilities can mix warmer air aloft down to the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call