Abstract
PurposeUrinary tract infections (UTIs) can evoke a rapid host immune response leading to bladder inflammation and epithelial damage. Neuroimmune interactions are critical for regulating immune function in mucosal tissues. Yet the role of nociceptor neurons in bladder host defense has not been well defined. This study aimed to explore the interaction between nociceptor neurons and bladder immune system during UTIs.MethodsIn this study, whether uropathogenic Escherichia coli (UPEC) and lipopolysaccharide (LPS) can directly stimulate nociceptor neurons was detected. Female C57BL/6J mice were treated with high dose of capsaicin, a high-affinity TRPV1 agonist, to ablate nociceptor neurons. Bladder inflammation, barrier epithelial function and bladder immune cell infiltration were assessed after UPEC infection. The level of neuropeptide calcitonin gene-related peptide (CGRP) in infected bladder was detected. Furthermore, the effects of CGRP on neutrophils and macrophages were evaluated both in vitro and in vivo.ResultsWe found that UPEC and its pathogenic factor LPS could directly excite nociceptor neurons, releasing CGRP into infected bladder, which suppressed the recruitment of neutrophils, the polarization of macrophages and the killing function of UPEC. Both Botulinum neurotoxin A (BoNT/A) and BIBN4096 (CGRP antagonism) blocked neuronal inhibition and prevented against UPEC infection.ConclusionThe present study showed a novel mechanism by which UPEC stimulated the secretion of CGRP from nociceptor neurons to suppress innate immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.