Abstract

Applications running in a large and complex manycore system can significantly benefit from adopting the dataflow model of computation. In a dataflow execution environment, a thread can run only if all its required inputs are available. While the potential benefits are large, it is not trivial to improve resource utilization and energy efficiency by focusing on dataflow thread execution models (i.e., the ways specifying how the threads adhering to a dataflow model of computation execute on a given compute/communication architecture). This paper proposes and implements a hardware-software co-design-based dataflow threads management framework. It works at the Network-on-Chip (NoC) level and consists of three stages. The first stage focuses on a fast and effective thread distribution policy. The next stage proposes an approach that adds reconfigurability to a 2D mesh NoC via customized instructions to manage the dataflow thread distribution. Finally, a 2D mesh and ring-based hybrid NoC is proposed for better scalability and higher performance. This work can be considered a primary reference framework from which extensions can be carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.