Abstract

The process of formation and the characteristics are studied of noble metal nanostructures created by pulsed laser ablation in vacuum. Femtosecond (fs) and nanosecond (ns) laser systems lasing at different wavelengths are used. Several different modifications of the pulsed lased deposition (PLD) technique, as off-axis deposition and glancing angle deposition configurations are used to create nanostructures. Laser annealing of single or bimetal thin films is used to fabricate alloyed nanostructures. The possibility is demonstrated of tuning the optical properties of gold nanostructures on flexible substrates. Different experimental techniques, as fast photography, optical emission spectroscopy, FE-SEM, AFM, TEM, and Raman spectroscopy are applied to characterize the noble metallic nanostructures produced. The optical spectra of the Au and Ag nanostructures are also studied experimentally and theoretically. The theoretical simulation methods used are: molecular dynamic (MD), finite difference time domain (FDTD) and a method based on the generalized multi-particle Mie (GMM) theory. Applications of noble metal nanostructures to surface enhanced Raman spectroscopy (SERS) and biophotonics are briefly considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.